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PART 1

Marginalized graph kernel for learning on graphs
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Scientific machine learning is key to DOE technological advances

Scientific machine learning (SciML) is a core component of artificial
intelligence (Al) and a computational technology that can be trained, with
scientific data, to augment or automate human skills. Across the Department
of Energy (DOE), scientific machine learning (SciML) has the potential to
transform science and energy research.

DOE Basic Research Needs Workshop for Scientific Machine Learning:
Core Technologies for Artificial Intelligence 2019
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The successes of scientific machine learning have concentrated

on select forms of data

amem e e Literature information extraction
» Text data

* Linear sequence
* Weston et al. 2019

Climate analytics

 Grid data
* Real values
» Kurth et al. 2018

Fluid Mechanics

* Mesh data
 Real values
 Raissi et al., 2020
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Many scientific data and representations are beyond mere

images or linear sequences
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Graph is a powerful format for scientific data, but machine

learning on graphs takes extra effort

» A graph is a structure that contains » Most existing ML methods work on
objects of pairwise relationships feature vectors, images, and
sequences only.
node

line: edge attribute

~

edge \~ Feature vector Hidden layers
\ .
' color: node attribute
“\‘ ) (1] ‘
ﬁ
thickness: edge weight 0 O
directed
edge
Input layer Output layer

.S. DEPARTMENT OF Ofﬁce Of

~=| BERKELEY LAB “Y/ENERGY | scence



Kernel method in machine learning: what, why, and how

A kernel is
a function
that

A kernel is
useful for

Kernels are
used in

Implicitly transforms raw data into high-
dimensional feature vectors via a feature
map; and then

Factor out knowledge on data
representation from downstream
algorithms,

Support vector machine (SVM), Gaussian
process regression (GPR), Kernel principal
component analysis (kPCA), etc.

Kernel

ML Algorithm

1 BERKELEY LAB

Returns an inner product between the

el Must be positive-definite.

Exploit infinite dimensionality and

nonlinear feature spaces.

A A A
A A

Space of increased dimension
after transformation

Low-dimensional space
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Many ML algorithms have a kernelized counterpart

SVM

Ridge
Regression

PCA

Clustering

Random
Projection
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Graph kernels are kernels that act on graphs

Limited-size subgraphs [ahmed et al

Graph  Histogram s
kernels Statistical moments pebnath et al.

1991]

Exponential vishwanathan, 2010]

Random walk

Geometric [vishwanathan, 2010]

Marginalized [kashima et al., 2003]

[Shervashidze et al. 2011]

NEE Weisfeiler-
prOd UCt Leh man [Morris et al. 2017]

Shortest-path [Borgwardt and Kriegel,

Misc. 2005

Spanning tree [Ramon and Gértner, 2003]
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The marginalized graph kernel can seamlessly handle diverse

types of graphs

« Definition: the inner product between two graphs is the statistical average of the
inner product of simultaneous random walk paths on the two graphs.

Step 1 Graph A Graph A Length=1 Length=2

0 0.9
Define random walks =04 “ —04x09 =036
H 0.4 . 06 . ’ ’
. . p=06 .-.p =0.6x0.9 =054

Use edge weight to set Sample paths

P = D—l A transition probability
Graph B

P: transition matrix
D: degree matrix

A: adjacency matrix
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The marginalized graph kernel can seamlessly handle diverse

types of graphs

« Definition: the inner product between two graphs is the statistical average of the
inner product of simultaneous random walk paths on the two graphs.

Step 2
Averaging path

similarities
o
Vs = @ @ x.(~=2 1, @ ©

o g

Path similarity defined
as product of base

kernel evaluations
k. base kernel for nodes
k.. base kernel for edges

. probabi
.' . lity

Graph inner
product/similarity
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Wider adoption of the marginalized graph kernel was hindered

due to practical challenges

l
K(G,6" = ZZZpsml)ps(hl)K (v, v ﬂpt(h i 1>pq<hl>]_[pt(h| ) | | Ko (encamoeny_ng) Ko (vneoviy)
k=2

I=1 h h

Efficient training
involving

Costof composite base

computation kernels K, K, is

could be high non-trivial

* direct summation is » Analytic derivative
intractable of the kernel is

difficult to derive
and implement
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Linear algebra reformulation simplifies computations and reveals

opportunities for optimization

) l l l
KG,6Y =) > puh)pshDKy (v o) | [pehathiomg@) [ [oiin-pa@d | [ Ke (enermeeny_n) Ko (vmovp)
I=1 h h i=2 j=2 k=2

» According to Kashima & Tsuda, the above
computation can be simplified into

K(G: G,) = z z S(hl' hll)Roo (hl' hll)
h n!

where
s(ha, 1Y) = ps(h)pi(RY)
Ren (s, ) = 73 (s, ) + ) €, o, B )Ren (s, )
i,j
with
t(i, j, hy, h1) = p; (ilh)p  GIRDK, (vi, v) ) K, (ein,, e

» We showed that the formulation is equivalent to
the following tensor product linear system:
K(G,G") = px - Re

where R, can be solved from

[DxV;l — Ax O Ex] Ry, = Dy qx-
Px;; = Ps(Dps(). ax;; = Pq(Dpg ()
diag(Dy)j = deg(v;) deg(v))
diag(Vs)ij = Ky(vi,v))

A

= . !
xijki — WijWki

Exijkl = Ke(eijJ ellcl)

multi-index: ij:elementati-n"+j  ijkl: element at (ij, ki)
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Linear algebra reformulation simplifies computations and reveals

opportunities for optimization

1) l
K(G'G%ZZZ Ps(h)pL (K, (v, vy ﬂpt(h |hi—1)pq(h) ﬂpt(w 1)pa(h;)QKe(ehk_lhk,eh;c_lh;c)Kv(vhk,v;t;{)

« The marginalized graph kernel in linear algebra form represents a modified graph
Laplacian

/ T —1
K(G,G) _pX (DX _AX @Ex> qux
degree adjacency edge label
SPD system e ° A * ° ° @@ ®d
[} ° * A e o ® ® ® @
to solve o ® ° * ® . o ®eo @0 @ o9
° ° ° ° ° 0 o
° o ece0 O
o0 ° ° o0 °
o0 ° ° ° ° o00 o0
° = ° — ®e o 0o 0
° e0 ° ° ° ° o000
° ° ° ° o0 eo0o L
° e 00 0 O Tang & de Jong, J Chem Phys, 2019: Prediction of
e ® e © o oo ® atomization energy using graph kernel and active learning

https://doi.org/10.1063/1.5078640

. DEPARTMENT OF Offlce Of

-1 BERKELEY LAB 'ENERGY | sience


https://doi.org/10.1063/1.5078640

Linear algebra reformulation simplifies derivation of analytic

derivatives

» The gradient of the marginalized graph kernel is crucial for efficient training

* It can be derived using matrix calculus:

K(G,G') = p§ [DxV;l —A, O Ex]_l Dy qx

Denote
Y= DxV;l — Ay O Ey
Then
0K 0Y
R .| = (y1 T 1
= tr aY 30 = (Y px) (Y D,qx)

Differentiation w.r.t. other hyperparameters can be derived similarly
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Marginalized graph kernel has found successful applications in a

variety of ML tasks

* Prediction of molecular atomization
energy

nodes = atoms, edges = interatomic interactions

Jump probabilities proportional to edge weights,
which decay with interatomic distance
Tij n
e.g. Wi; = ( _T_c>
Kronecker delta kernel on nodes labeled with
chemical elements

1, ifv1 =7y

e.g. ky(vy,v;) = {h otherwise

Gaussian kernel on edges labeled by interatomic
distance
1 (11—12)2]

2 o2

e.g. ko(ly,1;) = exp [

uuuuuuu

covariance/similarity matrix regression predictive model

Tang & de Jong, J Chem Phys, 2019: Prediction of
atomization energy using graph kernel and active learning
https://doi.org/10.1063/1.5078640
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Marginalized graph kernel has found successful applications in a

variety of ML tasks

 Quality assurance on noisy chromatography data

residual mean function
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Tang et al. Uncertainty Quantification and Outlier Detection on Noisy Data. Manuscript in preparation.
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Marginalized graph kernel has found successful applications in a

variety of ML tasks

 Protein function prediction

secondary sequence structure
structure elements

Borgwardt, K. M., Ong, C. S., Schonauer, S., Vishwanathan, S. V. N, Smola, A. J., & Kriegel, H.-P. (2005). Protein function prediction via graph kernels.
Bioinformatics, 21(suppl_1),i47-i56. https://doi.org/10.1093/bioinformatics/bti1007
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PART 2

GPU-accelerated high throughput solver for marginalized graph
kernel
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The marginalized graph kernel equation can be efficiently solved

using conjugate gradient

. . . function CG4GK(d.d",v.v',A, A" E.E’, q.q")
» The conjugate gradient algorithm can be

1
2 M« diag [(d® d) o (vev)™! I+l
used to iteratively solve the marginalized 3 x40 Il
. 4 re(dod) (qud) el
graph kernel equation 5 zeviy I+I
. . 6 p—z I+l
« V and E are not necessarily real matrices T perTs Il
« Kk can be complex functions ¥ repeat ) _

9 a—(deod)o(vev)'p ™l
-1 ) ' Ko m.l

K " —=p! (D _A E D 10 +(ARANO(ECE) p
(G,G ) P ( X < © X) e B 11 o+ p/(p'a) Il
J—I Ll I I 12 X +— X+ ap I+
l l 13 r < r—oaa I+l
degree adjacency  edge label 14 7z «— M 'r 1+1
SPD system o gee im um  eoe s 3% 328 15 plr'z Il

to solve *o® o *® o o ®eo 2® @ o9 16 3« p’/p
[ ] [ ] [ ] [ J [ ] [ L BN J _ +
o0 ° . ° 00o e’ I P z+pp Il
... .: .. . _ [ J .®..... ..: 18 P — pf
° 1) ° ° ° ° ° i 0 T
° ° ° ° 19 until r'r < €
[ ] ® 00 0 O
® ® g @ e oo o 20 return x
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Naive CG on precomputed matrices can only handle small graphs

| function CG4GK(d,d",v,.v',A, A" E.E’, q.q")
* Due to the tensor product structure of the

2 M+«diag|[(do d) o (vev)™! I+l
linear system, memory usage grows in 3 x«<0 I+l
. 4 r« (ded) - (qeq’) R |
quartic order 5 zevey I+I
6 p—z I+l
.. . . T p r'z 1“1
To compute similarity between a pair of 1000- % repeat
node graphs, a system of 1000000x1000000 9 ac(dod)o(viv) ' p oy
(4TB) is involved. 0 +HA®A)O(ESE) p el
11 a + p/(p'a) I“1
12 X — X+ ap I+l
________________ n 13 r < r—oaa I+1
14 z+— M 'r I+l
15 p’ —r'z I“1
. 16 B+ p'/p
® _> 17 p <+ z+[p I+l
18 pp
19 until r'r < €
20 return x
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Naive CG on precomputed matrices is also memory-bound on

GPUs

* NVIDIA Volta GPU requires more than 16 FLOPS per byte (64 FLOPS per float)
arithmetic intensity to achieve peak performance

& 512
g 256 N _ Peak SP
O\

S 128w AL NeFMA
o E 64 T \(\6‘(\6
o P 32 {8L
> S 16 -
°g 8- & & sy

g 4 -/ :g v g < -'?:-J S ..'qc_-J 3

—_ - © !

g Z 4 §v |&§ |&¢

m | ] L] ] ] L] L] 1 L] ]

o /8 1/4 12 1 2 4 8 16 32 64 128 256

Arithmetic Intensity (SP FLOPS/byte)
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On-the-fly Kronecker matrix-vector multiplication (XMV) can

overcome storage and memory bandwidth difficulties

Il On-the-fly Kronecker matrix-
vector multiplication (OTF XMV)

* Regenerates the product linear system on
the fly by streaming 8-by-8 submatrices
(tiles).

* Tiles staged in shared memory.

* Trade FLOPS for GB/s, but asymptotic

arithmetic complexity stays the same.

8 repeat

9 a—(dod)o(vev)l.p Bl
10 +(AQA)O®(EeE) . p 4|
11 o+ p/(p'a) I“1
12 X + X+ ap I+

Tang, Selvitopi, Popovici & Buluc, IPDPS 2020: A High-
Throughput Solver for Marginalized Graph Kernels on
GPU https://arxiv.org/abs/1910.06310
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OTF XMV achieves much higher FLOPS on dense graphs

» Microbenchmark on V100 with a dot product base kernel

256 Metrics on 5120 pairs of graphs each with 72 nodes
L 64 6\0‘0"}\ M Naive Shared Tiling B Register Blocking B Tiling + Blocking
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A 2-level hierarchical sparse matrix format ensures efficient

memory usage

» Packing into compact format: performed on CPU

* Outer level: retain only non-empty tiles as a preprocessing step

* Inner level: use bitmap + compact » Unpacking for OTF XMV: performed in parallel on
storage format . . . .
GPU using bit magic + warp intrinsics

EMPTY NON-EMPTY
TILE TILE
DISCARDED COMPRESSED DENSE STORAGE
:*Ll K —» A B C D E FGH I JKLMNUOZPAQR RS
""""" - H|L R
Yty E M Q BITMAP 64-bit integer nzmask
E---E- » F 0 0/j0j0j0f1f{0|0|0 0b1000001000000100010010000010011101010010010011001100000011000000
| I __’ 0o/0|/0|1|1|/0|0/|1
..r__:_ [ 00101010+
N N olo/1]ofo|1]0]0 0x0303324AE4122041
. S ojojoj1foj0j0]|0O
-. AlclGglJ P olofofo[1]o]o]0
._*n ) ' ' 1 1{1|1|1(0|1{0|0
boobooeaooas B|D S 1/1]0lolololo]1
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A 2-level hierarchical sparse matrix format ensures efficient

memory usage

 Heuristics for dynamic code path selection:

« If both tiles contain more than certain number of non-zero

* Quter level: retain only non-empty tiles )
elements, treat them as dense matrices.

* Inner level: use bitmap + compact

storage format + Otherwise, compute only the non-zeros.
EMPTY NON-EMPTY
TILE TILE
DISCARDED COMPRESSED DENSE STORAGE
EEE$5“'..' K —» A B CDEF GH I JKLMNOZPAOQR RS
Hoas T HIL R
o T e E M Q BITMAP 64-bit integer nzmask

r---:- » F 0 0/j0j0j0f1f{0|0|0 0b1000001000000100010010000010011101010010010011001100000011000000
I — 0/0f0O|1|1|/0|0f1
_r_':_ | _’00101010-}
N N olo/1]ofo|1]0]0 0x0303324AE4122041
! olofo[1]o]oo]0
-. AlclGglJ P olofofo[1]o]o]0
1{1|1|1(0|1{0|0
B|D S 1/1/0/0l0ol0|1
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Specialized graph reordering algorithm improves efficiency of

OTF XMV and 2-level sparse format

* Reduces # of non-empty sparse tiles
« Improves density of non-empty tiles 4

- Cost easily amortized by repeated = /‘1/
pairwise graph kernel computations. z "'ﬁ,
™~ (.o. e/
(§:) U
A\

Crwed

13/25 non-empty
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The On-the-Fly GPU Solver Achieves Four Orders of Magnitude

Speedup Over Existing Packages

» GraKeL: Cython, multi-threading

» GraphKernels: Python, no parallelization

Time-to-solution comparison with GraKeL and GraphKernels

M Present GraKelL GraphKernels
A —172 seconds
og%@ - 6461 x 12.9 days
o 998 x 2.0 days
[P 153 seconds
oo 3297 x 5.8 days
12430 x 22.0 days
1 second 1 min 1 hour 1 day 1 month
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Marginalized graph kernel has found successful applications in a

variety of ML tasks

* Prediction of molecular atomization energy Tang & de Jong, J Chem Phys, 2019

Prediction of atomization energy using graph kernel and active learning
https://doi.org/10.1063/1.5078640

Graph kernel evaluation

training

L)
[ ]
S ESEEEEEEDN
test % Y SESeEEEEEEES
set SSeeEEEEEEEE
S ESEEEEEEDN
) @ [ R R R AR N RO R OO B
S SeEEEEREEDS
pairwise . L n icti
dataset kernel covariance/similarity matrix regression predictive model

evaluation

Gaussian Process Regression on Molecules
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Marginalized graph kernel enables active learning of atomization

energy in orders of magnitude less time than NN

« QM7: 7165 small organic molecules consisting of H, C, N, O, S, up to 23 atoms

« From scratch training time: N = 1000: 10 s training, 0.018 s/sample predicting, N = 2000: 40 s training,

0.034 s/sample predicting Random Sampling

30

MAE RMSE
MAE: Mean Average Error %
RMSE: Root-Mean Square Error Is 20
KRR: Kernel Ridge Regression % 1 ‘ * o ¢
NN: Neural Network TS 3 :: %
GRAPE, SOAP, Coulomb, BoB: fingerprint algorithms ° { ', ; ; ; b ¢ ;

100 300 500 1000 2000 5000 100 300 500 1000 2000 5000

Training set size

o [FHBJKRR-GRAPE ¢ [FHBJKRR-SOAP ¥ [HMB]KRR-Coulomb e Present
[FHB]KRR-Coulomb 4 [HMBINN-Coulomb + [HBR]JKRR-BoB
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SUMMARY
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Thank You!

pip install graphdot

Tang, Selvitopi, Popovici, Buluc, IPDPS 2020: A High-Throughput Solver for Marginalized Graph Kernels on GPU.
https://arxiv.org/abs/1910.06310
Manuscript in preparation: GraphDot: A GPU-Accelerated Python Package for Graph-Based Machine Learning.
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